研究論文

古色再現いぶし瓦の炭素膜のシンクロトロン光による評価

福岡修*1、杉山信之*1、杉本貴紀*1、中尾俊章*1、村井崇章*2、村瀬晴紀*3、星幸二*4

Analysis of Carbon on Ibushikawara that Antique Look Reproduct used by Synchrotron Radiation

Osamu FUKUOKA^{*1},Nobuyuki SUGIYAMA^{*1},Takanori SUGIMOTO^{*1}, Toshiaki NAKAO^{*1},Takaaki MURAI^{*2},Haruki MURASE^{*3} and Kouji HOSHI^{*4}

Research Support Department^{*1} Industrial Research Center^{*2} Tokoname Ceramic Research Center^{*3*4}

いぶし瓦表面炭素膜のシンクロトロン光を用いた X 線吸収分光測定によって、炭素膜の結合状態や配向 性を評価した。評価の結果、銀色の現代いぶし瓦と黒みを帯びた古色いぶし瓦のπ結合性軌道の配向性に 違いが見られたが、古色いぶし瓦と一部の古代いぶし瓦は分析結果が非常に似ており、同じ様な炭素膜構 造になっていること明らかになった。

1. はじめに

いぶし瓦は表面に炭素膜が付与されている瓦であり、 その重厚な外観のみでなく、耐久性の高さから、古来よ り建造物に用いられてきた。古代のいぶし瓦は黒色のも のが多く、文化財の改修工事において、現代の銀色いぶ し瓦で葺き替えると外観が大きく変わってしまうという 課題があり、近年、黒みを帯びた古色いぶし瓦への需用 がある。いぶし瓦の古色化については、様々な工法が検 討され、黒みを帯びたものがいくつか開発されているが、 古代いぶし瓦と同様な炭素膜質であるか、今まで検証で きていなかった。

本研究では、銀色の現代いぶし瓦と黒みを帯びた古色 いぶし瓦、古代いぶし瓦を用い、炭素膜構造の違いにつ いて分析し、色みとの関係性について調査を行った。炭 素膜質の分析においては、あいちシンクロトロン光セン ターの装置(BL7U)を用いて分析を行った。

2. 実験方法

2.1 分析試料

分析試料として、銀色の現代いぶし瓦、三州地域の瓦 メーカーで開発された黒みを帯びた古色いぶし瓦、平城 宮跡で発掘された古代いぶし瓦を用いた。古代いぶし瓦 は奈良時代のものと推定された黒色瓦と鎌倉時代のもの と推定された銀色瓦を用いた。図1に現代いぶし瓦と古 色いぶし瓦の写真を示す。また、瓦の平坦性、いぶし炭 素膜の原料、酸化焼成による変化を調べるため、瓦素地 ではなく平坦なガラス基板を用いて燻化し炭素膜を付与 したもの(銀色)、燻化原料に松脂を用いていぶした瓦(銀 色)、現代いぶし瓦を用いて大気雰囲気で400℃(銀色) と500℃(黒色)で1時間焼成した瓦を用いた。

図1 現代いぶし瓦(左)と古色いぶし瓦(右)の写真

2.2 分析方法

基本的な炭素の構造を調べるため、顕微ラマン分光装置(日本分光(株)製 NRS-5100)を用いて分析を行った。 励起光源として波長532nmの単波長レーザーを用いた。 次に、炭素膜の表面形態を観察するため、走査電子顕微 鏡((株)日立ハイテクノロジーズ製 SU-70)を用いて観 察を行った。炭素構造の詳細な分析を行うため、あいち シンクロトロン光センターの BL7U ラインを用いて、炭 素の K 吸収端の X 線吸収スペクトルを測定した。また、 図2の様に X 線の入射角度直入射 90°と45°の吸収ス

シンクロトロン光 (入射角度 90° or 45°

図2 BL7U X線吸収スペクトルの測定系

ペクトルの角度依存性を測定し、結合状態の配向性について評価を行った¹⁾。さらに、透過型電子顕微鏡(日本 電子(株)製 JEM-2100F)を用いて現代いぶし瓦の断面 TEM-EDX マッピングを行い、いぶし瓦の炭素膜の成長 の仕方について考察を行った。

3.実験結果及び考察

3.1 ラマン分光測定

図3に高配向グラファイト(HOPG)、ダイヤモンド、 グラッシーカーボン、現代いぶし瓦、古色いぶし瓦、古 代いぶし瓦(2種)のラマン分光測定結果を示す。 (a)HOPGは一般的にG(Graphite)バンドと呼ばれる 1580cm⁻¹付近のピーク、(b)ダイヤモンドはD(disorder) バンドと呼ばれる1350cm⁻¹付近のピークが確認できた。 また(c)グラッシーカーボンはブロードなDバンドとG バンドが観測された。(d)現代いぶし瓦のスペクトルは、 グラッシーカーボンと類似したスペクトルが得られてい ることが分かった。さらに、(e)古色いぶし瓦及び(f)(g) 古代いぶし瓦2種のスペクトルも、現代いぶし瓦と類似 したスペクトルが得られていることがおかり、炭素膜の 構造自体はどの瓦も似ていることが考察された。

図3 標準試料及び各種いぶし瓦のラマン分光スペク トル

(a)HOPG、(b)ダイヤモンド、(c)グラッシーカーボン、(d)
現代いぶし瓦、(e)古色いぶし瓦、(f)古代いぶし瓦(推定
奈良時代)(g)古代いぶし瓦(推定鎌倉時代)

3.2 走查電子顕微鏡観察

図4に現代いぶし瓦、古色いぶし瓦、古代いぶし瓦2 種の電子顕微鏡写真を示す。現代いぶし瓦は、表面に無 数の2~3µmの球状の炭素構造が確認された。一方、古 色いぶし瓦表面は球状炭素構造が確認されず、比較的滑 らかな表面が観察された。また、古代いぶし瓦(推定奈 良時代)は、全体的に平坦な表面であったが、亀裂の様 な空隙や、数µmの板上の構造が折重なっている様子も 観察された。古代いぶし瓦(推定鎌倉時代)については、 現代瓦と同じく無数の球状炭素が観察されたが、そのサ イズが非常に大きく、10µm 前後であった。以上より、 古色いぶし瓦と現代いぶし瓦は、表面形態が大きく異な ることが分かった。

図4 各種いぶし瓦の FE-SEM 観察像(5000 倍) (d)現代いぶし瓦、(e)古色いぶし瓦、(f)古代いぶし瓦(推 定奈良時代)(g)古代いぶし瓦(推定鎌倉時代)

また、一部の古代いぶし瓦は、現代いぶし瓦で見られる ような球状炭素が存在するものがあることが分かった。

図5にガラス上にいぶし膜を付与したものと500℃で 酸化焼成したいぶし瓦の電子顕微鏡写真を示す。ガラス 上のいぶし膜は、球形に近い炭素が現代いぶし瓦よりも 非常に密に分布している様子が見られた。また500℃で 酸化焼成した試料は、球状炭素が見られず、炭素膜の剥 がれが見られ、さらに炭素膜に無数の穴が確認された。

図5 各種いぶし瓦の FE-SEM 観察像(5000 倍)
(h)ガラス上いぶし膜、(k)500℃酸化試料

3.3 シンクロトロン光分析 (X線吸収微細構造分析)

図6に標準試料(HOPG、グラッシーカーボン)と現 代いぶし瓦の炭素のK吸収端X線吸収スペクトルを示す。 文献では炭素の K 吸収端 X 線吸収スペクトルにおいて 285eV 付近に 1s→π*、289eV 以上に 1s→σ*の X 線吸 収が見られることが示されており²⁾、本研究で用いた試 料でもこれらを確認することができた。(a)HOPG は、グ ラフェン単位構造中のπ結合方向を向いており、90°入 射(試料面に対し直入射)では285eV付近の吸収がほと んど見られなかったが、45°入射では非常に増強されて いる様子が確認できた。さらに、(c)グラッシーカーボン は構造異方性がなく、HOPG で見られた様な角度依存が ないことを確認した。(d)現代いぶし瓦は、285eV付近の ピークについて、入射角度 90° に対し 45° でややピー クの増大が見られた。従って、現代いぶし瓦は炭素六員 環構造のような SP² 軌道を持つ構造に配向性があること が示唆された。また、現代いぶし瓦のスペクトルの、 287eV に C-O、288eV に C-H の化学状態に対応すると 思われるピークが確認されたが、これらについて角度依 存性はほとんど確認出来なかった。一方、古色いぶし瓦、

古代いぶし瓦(推定奈良時代)については、現代いぶし 瓦で見られた様な 285eV 付近のピークの角度依存性は 見られなかった。従って、両試料は、π結合性軌道に関 しては配向性がない状態であると考えられる。また、古 代いぶし瓦(推定鎌倉時代)については、現代いぶし瓦 と同じく、285eV 付近の吸収の角度依存性が強く見られ た。

図6 いぶし瓦の炭素の K 吸収端 X 線吸収スペクトル (a)HOPG、(c)グラッシーカーボン、(d)現代いぶし瓦、 (e)古色いぶし瓦、(f)古代いぶし瓦(推定奈良)、(g)古代 いぶし瓦(推定鎌倉)

次に図7に実験的に作製したいぶし瓦4種(ガラス上 燻化、松脂燻化、400℃酸化、500℃酸化)の炭素の K 吸収端X線吸収スペクトルを示す。(h)ガラス上に燻化し た試料は、285eV付近の吸収の角度依存が(d)現代いぶし 瓦よりも強く見られた。従って、ガラス表面の平滑性は 炭素膜構造の配向性に大きく影響していることが示唆さ れた。(i)松脂で燻化した試料と(j)400℃酸化試料につい ては、現代いぶし瓦と色みは似ており、285eV付近のX 線吸収の角度依存性も同様に見られた。従って、400℃ の酸化焼成では膜の構造に変化は起こっておらず、燻化 の原料による炭素膜構造の変化についても、本研究では 確認出来なかった。最後に、(k)500℃酸化した試料の結 果を見ると、色は黒色であったが、285eV付近、289eV 以上のスペクトルの確認ができなかった。従って、瓦表 面の炭素膜自体がほとんど無くなっていると考えられる。 500℃酸化で黒色化した原因については、素地中のFeや Siの還元や炭化物の生成が考えられる。また、このX線 吸収分光と電子顕微鏡観察結果より、球状炭素の存在と 285eVのX線吸収には相関があり、球状炭素中で炭素構 造の配向が存在していることが示唆された。

図7 いぶし瓦(4種)の炭素のK吸収端X線吸収スペクトル

(h)ガラス上燻化、(i)松脂燻化、(j)400℃酸化、(k)500℃酸化

3.4 断面 TEM-EDX マッピング

図8に現代いぶし瓦を用いて断面 TEM 元素マッピン グ(EDX マッピング)を行った結果を示す。(a)のCの マッピングを見ると、炭素膜と素地の境界を確認できた。 さらに、(b)(c)(d)を見ると素地内部でAl、Si、Feの特 徴的な分布が見られた。AlやFeが多い板状の結晶は、 炭素膜-素地界面付近で並んでいる様子が見られた。この 原因としては、素地の押し出し成形時にかかる応力によ るものであると考えられる。本研究結果より、素地の平 坦性と球状炭素の成長には相関があると考えられ、現代 のいぶし瓦表面は、この板状結晶の配向などにより、素 地の平坦性が保持され、球状炭素が発生しやすいのでは ないかと考えられる。

図8 現代いぶし瓦の断面 TEM-EDX マッピング像 (a)C-K αマッピング、(b)Al-K αマッピング、 (c)Si-K αマッピング、(d)Fe-K αマッピング

4. 結び

現代いぶし瓦(銀色)、古色いぶし瓦(黒色)、古代い ぶし瓦(推定奈良時代(黒色)、鎌倉時代(銀色))を用 いてラマン分光測定、電子顕微鏡観察、X線吸収分光を 行った。ラマン分光測定結果より、どの試料もグラッシ ーカーボンに近い炭素構造であることが示された。電子 顕微鏡観察より、現代いぶし瓦と古代いぶし瓦(推定鎌 倉時代)に数μmの球状の炭素膜が確認された。X線吸 収分光測定より、現代いぶし瓦と古代いぶし瓦(推定鎌 倉時代)ではπ結合に起因すると思われるピークの入射 角度依存性が見られたが、古色いぶし瓦と古代いぶし瓦 (推定奈良時代)ではその角度依存性が見られなかった。

謝辞

本研究を遂行するにあたり試料を提供いただいた株 式会社白鳳瓦様、連携研究協定を締結し試料提供いただ いた独立行政法人国立文化財機構奈良文化財研究所様に 厚くお礼申し上げます。

文献

- 1) 村松康司: リガクジャーナル, 36, 35 (2005)
- 2) H.Ito et al : Journal of Physics: Conference Series, 441, 012039(2013)